
Fault Tolerance Techniques in Grid Computing
Systems

T. Altameem
Dept. of Computer Science, RCC, King Saud University,

P.O. Box: 28095 – 11437 Riyadh-Saudi Arabia.

Abstract- In grid computing, resources are used outside the

boundary of organizations and it becomes increasingly
difficult to guarantee that resources being used are not
malicious. Also, resources may enter and leave the grid at any
time. So, fault tolerance is a crucial issue in grid computing.
Fault tolerance can enhance grid throughput, utilization,
response time and more economic profits. All mechanisms
proposed to deal with fault-tolerant issues in grids are
classified into: job replication and job checkpointing
techniques. These techniques are used according to the
requirements of the computational grid and the type of
environment, resources and virtual organizations it is
supposed to work with. Each has its own advantages and
disadvantages which forms the subject matter of this paper.

Keywords – Fault tolerance, grid computing, job replication,
job checkpointing.

I. INTRODUCTION

Grid computing technology is developed for solving
large scale computational and data intensive problems in
science, engineering, and commerce [1]. It is distinct from
conventional distributed computing by autonomic
heterogeneous resources and large scale resource sharing
[2]. It uses resources of many separate computers connected
by a network (usually internet). The tremendously large
number and the heterogeneous potential of grid resources
cause scheduling of user jobs to these resources is the key
technology in grid computing [1], [3], [4].

Grid computing systems have been used for execution
of applications that need more time. During execution, the
computation cannot complete if any resource failure is
encountered. The possibility of failures occurring is
exacerbated by the fact that many grid resources will be
used in performing long tasks that may need several days of
computation. Also, since grid environments are extremely
heterogeneous and dynamic, with components joining and
leaving the system all the time, more faults are likely to
occur in grid environments. Therefore, fault tolerance has
become a crucial issue in grid computing systems.

The fault tolerance techniques compromise between
efficiency and reliability of the resource in order to
complete the execution even in the presence of failures. The
main objective usually is to preserve efficiency hoping that
failures will be less. However, the computational resources
have increased in grid but its dynamic behavior makes the
environment unpredictable and failure prone.

All techniques proposed to deal with fault-tolerant
issues in grids are classified into two categories. The first
one is called space redundancy or job replication. In this
category, the same job is replicated to be executed on
multiple undependable resources to guard the job against a
single point of failure. The second category is called time
redundancy or checkpointing and rollback. In this category,
the state of a running job is saved to a stable storage. This
state can be used later in case of any fault to resume
execution of the job instead of restating it. An adaptive
technique uses both job replication and checkpointing to
achieve the fault-tolerant [5]. To overcome the drawbacks
present with job replication and checkpointing, fault
tolerance is factored into grid scheduling.

This paper presents the most commonly used fault
tolerance techniques in grid computing systems. Also, it
considers the most parameters used for evaluating the
performance of grid computing systems.

This paper is organized as follows: section 2 briefly
explains fault tolerance in grid computing. In Section 3, the
standard metrics used to measure the performance of fault
tolerance techniques are presented. Section 4 elaborates the
techniques of the fault tolerance in grids. Section 5
discusses the process of selecting the fault tolerance
technique. Section 6 concludes the paper.

II. FAULT TOLERANCE IN GRID COMPUTING

Fault tolerance is preserving the delivery of expected
services despite the presence of fault-caused errors within
the system itself. Errors are detected and corrected and
permanent faults are located and removed while the system
continues to deliver acceptable services [6]. In
computational grids, fault tolerance is important as the
dependability of grid resources may not be guaranteed. It is
needed to enable the grid to continue its work when one or
more resources fail. In this sense, a fault-tolerant service
must be included to detect errors and recover from them
and thus avoiding the failure of the grid.

The heterogeneous nature of grid resources means that
applications will be performing in environments where
faults are more likely to occur between disparate resources.
if there is no fault tolerance provided, the grid cannot
survive to continue when one or more resources fail and the
whole application crashes. Thus a fault tolerant technique is
needed that would enable grid to continue executing even in
the presence of faults.

T. Altameem / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 4 (6) , 2013, 858-862

www.ijcsit.com 858

The architecture of basic fault tolerance employed in
grid computing systems is shown in Fig. 1. The system has
five main components: Grid Interface, Allocator,
Information Server, Fault Handler, and the Grid. Grid
Interface provides an interface to users to submit their jobs
for execution. Allocator selects the optimal resources to
execute the job. The allocation decisions of the Allocator
are based on the Quality of Service (QoS) requirements of
users. The Information Server (IS) contains information
about all resources in the grid. The information can include
computation speed, memory available, load, and so on. The
IS supplies the scheduler with the required information. The
Fault Handler is responsible for detecting failure of
resources and estimating the required information for fault
tolerance process.

III. PERFORMANCE METRICS

The performance of fault tolerance techniques is
measured by standards metrics turnaround time, throughput,
fail tendency and grid load. The parameters are defined as:

Turnaround time: It is an important parameter for
determining the performance of different fault tolerance
techniques. It is the only parameter users pay attention for.
It can be defined as the interval of time elapsed from
submission of a job to the time of its completion.

Throughput: Historically, throughput has been a
measure of the comparative effectiveness of high
performance computers that run many programs
concurrently. An early throughput measure was the number
of batch jobs completed in a certain period of time. More
recent measures assume a more complicated mixture of
work or focus on some particular aspect of computer
operation.

Throughput is used to measure the ability of the grid to
accommodate jobs. It is defined as:

,)(
nT

n
nThroughput 

where n is the total number of jobs submitted and Tn is
the total amount of time necessary to complete n jobs.

Fail tendency: It is the percentage of the tendency of
grid resources to fail and is defined as:

%,1001 



m

p

cyFailTenden

m

j
fj

where m is the total number of grid resources and pfj is
the failure rate of resource j. Through this metric, we can
expect the faulty behavior of the system.

Grid load: It represents the amount of extra
computations encountered by the grid to alleviate the effect
of resources failures.

IV. FAULT TOLERANCE TECHNIQUES

Providing fault tolerance in a grid environment, while
optimizing resource utilization and response time, is a
challenging task. A large number of research efforts have
already been devoted to fault tolerance in the area of
distributed computing. However, a little work has been
done for fault tolerance in grid environments. Aspects that
have been explored include the design and implementation
of fault detection services, as well as the development of

Fig. 1. The basic architecture of fault tolerance in grid computing.

Grid
Interface

Allocator

Information
Server

R1

application

Results ap
p
lic
at
io
n

R
e
su
lt
s

Q
u
e
ry

R
e
so
u
rc
e
s

lis
t

Notify

Update

Grid

Fault
Handler

R2 Rn …

T. Altameem / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 4 (6) , 2013, 858-862

www.ijcsit.com 859

failure prediction, and recovery strategies. The recovery
strategies are classified into job replication (space-sharing)
and checkpointing (Time-sharing).

A. Job replication

Job replication is a key mechanism for developing fault-
tolerant and highly available grids. It is commonly used by
fault tolerance mechanisms in order to enhance the
availability of the grid. Replication is based on the
assumption that the probability of a single resource failure
is much higher than of a simultaneous failure of multiple
resources. It avoids job recomputation by starting several
copies of the same job on different resources. With
redundant copies of a job, the grid can continue to provide a
service in spite of failure of some grid resources carrying
out job copies without affecting the performance of the
grid.

J. Abawajy [7] presented a distributed fault-tolerant
scheduling (DFTS) algorithm that couples job scheduling
with job replication. He assumed that grid is divided into
sites and each site has a scheduling manager for resources
in this site. Each scheduling manager acts as a backup for
another scheduling manager. His algorithm is static because
it depends on using a fixed number of replicas for each job.
Each job replica is scheduled to a different site to be
executed. The number of replicas is specified by the user at
the time of job submission.

K. Srinivasa, G. Siddesh and S. Cherian [8] proposed an
adaptive replication middleware which depends on data
replication at different sites of the grid. The middleware
dispatches replicas to different nodes and enables data
synchronization between multiple heterogeneous nodes in
the grid. Data sources are synchronized by using TCP/IP
transfer protocol.

M. Chetepen et al [9] provided some scheduling
heuristics based on job replication and rescheduling of
failed jobs. Their heuristics do not depend on particular grid
architecture and they are suitable for scheduling any
application with independent jobs. Scheduling decisions are
based on dynamic information on the grid status and not on
the information about the scheduled jobs.

In [10], C. Jiang and et al proposed a replication based
fault tolerant algorithm which schedules jobs by matching
the user security demand and the resource trust level. The
number of job replications changes adaptively according to
the security level of the grid environment.

M. Amoon [5] considers adaptive job replication
technique in order to create a proactive fault-tolerant
scheduling system. In his system, two algorithms are
proposed. One algorithm is for determining the number of
replicas for each job, namely and the other algorithm is
used for selecting the resources that execute these replicas.
Both of algorithms depend on using the fault rate of the
resources. The number of replicas is dynamic and is
determined according to the fault rate of resources
scheduled for jobs.

The main disadvantage of job replication technique is
the additional resources used in executing the same job.
This can cause grid over provisioning and can lead to great
delays for other jobs waiting these resources to become
free. Also, most of the existing replication based techniques

are static. This means that the number of replicas of the
original job is decided before execution and it is fixed
number. Static job replication leads to excessive utilization
of resources and also to excess load on the grid.

On the other hand, adaptive job replication can alleviate
this extra load resulting from using fixed number of replica.
Adaptive job replication techniques determine the number
of replica according to the failure history of the primary
resource allocated to execute the job. Thus, the number of
replica will be different for each job according to the failure
behavior of each resource in the past. Bad failure history
means big number of replica and good failure history means
small number of replica.

Fig. 2. Comparison between static and dynamic job replication.

Fig. 2 shows the comparison between using a static job
replication technique and using and adaptive one. It is
shown that adaptive replication techniques provide less grid
load than the static ones. So, using adaptive replication
techniques is better than using static replication techniques.

B. Job checkpointing

Checkpointing is the ability to save the state of a
running job to a stable storage. In case of any fault, this
saved state can be used to resume execution of the
application from the point in computation where the check-
point was last registered instead of restarting the application
from its very beginning. This can reduce the execution time
to a large extent. Thus, the purpose of checkpointing is to
increase fault-tolerance and to speedup application
execution on unreliable systems.

Many real time applications in distributed system [11]-
[13] have used checkpointing for performance optimization.
F. G. Khan, K. Qureshi and B. Nazir [14] presented a
performance evaluation of most commonly used fault-
tolerant techniques (FTTs) in grid computing. These FTTs
include retrying, checkpointing, alternate resource and
alternate task. The metrics used in their evaluation are
throughput, turnaround time, waiting time and network
delay.

B. Nazir, K. Qureshi and F. G. Khan [15] presented an
adaptive fault tolerant job scheduling strategy for grids.
Their strategy is checkpointing-based. It maintains the fault
index of grid resources. The scheduler makes scheduling

0

2

4

6

8

10

12

14

1000 2000 3000 4000 5000

G
ri
d
 lo
ad

 (
TI
P
S)

Jobs

Static

Adaptive

T. Altameem / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 4 (6) , 2013, 858-862

www.ijcsit.com 860

decisions according to the value of the fault index of
resources and response time of resources.

In [16], M. Nandagopal and V. R. Uthariaraj combined
the mechanism developed in [15] with Minimum Total
Time to Release (MTTR) job scheduling algorithm. Also,
when making scheduling decisions, their scheduler depends
on using the fault index and the response time of resources.

J. Mehta and S. Chaudhary [17] assumed that short
running jobs can be resubmitted from scratch if they failed
and presented a fault tolerant scheme that should applied to
long running jobs using checkpointing.

In [18], P. Domingues, J. Silva and L. Silva presented a
study about the effects of sharing checkpoints on
turnaround time in desktop grid systems. In [19], M.
Chtepen et al provided an algorithm called MeanFailureCP.
This algorithm is designed to modify a job checkpointing
interval as a function of mean failure frequency of resources
where the job is being executed, and the total job execution
time. In [20], they developed the MeanFailureCP+
algorithm which is a modification of the MeanFailureCP
that deals with checkpointing of grid applications with
execution times that are unknown a priori.

The main disadvantage of checkpointing mechanism is
that it performs identically regardless the stability of the
resource. This inappropriate checkpointing can delay the
job execution and can increase the grid load. Furthermore,
each job maintains multiple checkpoints and has to
periodically invoke a garbage collection algorithm to
reclaim the checkpoints that are no longer useful.

The efficiency of a checkpointing technique strongly
depends on a good choice of a checkpointing interval. The
checkpointing interval is the duration between two
checkpoints. Short checkpointing interval leads to a large
number of redundant checkpoints, which delay job
processing by consuming computational and network
resources. On the other hand, when a checkpointing interval
is too long, a substantial amount of work has to be redone
in case of a resource failure. Each interval starts when a
checkpoint is established and ends when next checkpoint is
established. There are several benefits of using
checkpointing, including: fault recovery, better response
time, and better system utilization.

Fig. 3. Comparison between static and dynamic job checkpointing.

Most of job checkpointing techniques use a static or
fixed number of checkpoints which leads to excessive
utilization of resources and also to excess load on the grid.
Adaptive job checkpointing techniques can alleviate this
extra load resulting from using fixed number of
checkpoints. These techniques determine the number of
checkpoints according to the failure rate of the primary
resource allocated to execute the job. Thus the number of
checkpoints will be different for each job. Fig. 3 shows the
comparison between using a static checkpointing technique
and using and an adaptive one. It is shown that adaptive
checkpointing techniques provide less grid load than the
static ones. So, using adaptive checkpointing techniques is
better than using static checkpointing techniques.

V. FAULT TOLERANCE TECHNIQUE SELECTION

Fault tolerance is widely adopted to increase the overall
system performance and reliability of grids. Since grid
computing systems usually include a large number of
distributed resources, selecting the most suitable fault
tolerance technique reduces the overhead of system
developers and helps to achieve optimal scheduling of
resources.

Different fault tolerance techniques have different
features. For example, the response time of a checkpointing
technique is not good compared with the job replication
technique. This is due to the extra time needed to migrate
the job to another resource when a resource fails. On the
other hand, job replication technique does not need to
migrate jobs between resources and the first returned
response is employed. The required networking and
computing resources of job replication techniques are much
higher than those of checkpointing techniques.
Checkpointing has another cost when writing checkpoint
data to stable storage whenever a checkpoint is taken. This
cost is proportional to the size of the checkpoint data.

Thus, we can use checkpointing strategy for the
resources constrained grids and job replication technique
for real time applications. However, determination of the
number of replica and the number and intervals of
checkpoints are still big challenges.

VI. CONCLUSIONS

Fault tolerance plays an important role in order to
achieve good performance of a grid system. The most
famous standards metrics used to evaluate the performance
of fault tolerance techniques are turnaround time,
throughput, fail tendency and grid load. Replication and
Check pointing are the major techniques used in any fault-
tolerant grid management system. In this paper, some works
that have been done using the two techniques are surveyed.
It is shown that adaptive fault tolerant technique provides
better performance than static one.

0

2000

4000

6000

8000

10000

100 200 300 400 500

C
h
e
ck
p
o
in
ts

Jobs

Adaptive

Static

T. Altameem / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 4 (6) , 2013, 858-862

www.ijcsit.com 861

REFERENCES
[1] P. Huang, H. Peng, P. Lin and X. Li, “Static Strategy and Dynamic

Adjustment: An Effective Method for Grid Task Scheduling,” J.
Future Generation Computer Systems 25, 884–892 (2009).

[2] L. Lu and S. Yang, “DIRSS_G: An Intelligent Resource Scheduling
System for Grid Environment Based on Dynamic Pricing,” Int. J.
Information Technology 12 (4), 120–127 (2006).

[3] L. Chunlin, Z. J. Xiu, and L. Layuan, “Resource Scheduling with
Conflicting Objectives in Grid Environments: Model and
Evaluation,” J. Network and Computer Applications 32, 760–769
(2009).

[4] T. Altameem and M. Amoon, “An Agent-Based approach for dynamic
adjustment of scheduled Jobs in Computational Grids”, Journal of
Computer and Systems Sciences International, vol. 49, no. 5, pp.
765–772, Oct. 2010.

[5] M. Amoon, “Design of a Fault-Tolerant Scheduling System for Grid
Computing,” Proc. of International Conference on Networking and
Distributed Computing (ICNDC2011), 21-24 Sep., 2011, Beijing, P.
R. China, pp. 104-108.

[6] M. Amoon, “A job checkpointing system for computational grids,”
Central European Journal of Computer Science, vol. 3, no. 1, pp.
17-26, March 2013.

[7] J. Abawajy, "Fault-tolerant scheduling policy for grid computing
systems," Proc. of 18th IEEE International Parallel and Distributed
Processing Symposium, April 26-30, 2004.

[8] K. Srinivasa, G. Siddesh and S. Cherian, "Fault-tolerant middleware for
grid computing," Proc. of 12th IEEE International Conference on
High Performance Computing and Communications, Melbourne,
Australia, pp. 635-640, Sep. 1-3, 2010.

[9] M. Chtepen, B. Dhoedt, F. Cleays and P. Vanrolleghem, "Evaluation of
replication and rescheduling heuristics for gird systems with varying
resource availability," Proc. of 18th International Conference on
Parallel and Distributed Computing Systems, Anaheim, CA, USA,
pp. 622-627, Nov. 13-15, 2006.

[10] B. Khoo and B. Veeravalli, "Pro-active failure handling mechanisms
for scheduling in grid computing environments," J. Parallel and
Distributed Computing, vol. 70, no. 3, pp. 189-200, 2010

[11] Buyya R (2002) Economic-based distributed resource management

and scheduling for grid computing. Ph.D. Paper, Monash
University, Melbourne, Australia, 12 April 2002

[12] Foster I, Kesselman C, Tueke S (2001) The anatomy of the grid:
enabling scalable virtual organizations. Int J Supercomput Appl.

[13] Nazir B, Khan T (2006) Fault tolerant job scheduling in
computational grid. In: Proceedings of 2nd IEEE international
conference on emerging technologies (ICET’06), Peshawar,
Pakistan, 13–14 November 2006, pp 708–713

[14] F. G. Khan, K. Qureshi and B. Nazir, "Performance Evolution of
Fault Tolerance techniques in Grid Computing System," Journal of
Computing and Electrical Engineering, vol. 36, pp. 1110-1122,
2010.

[15] B. Nazir, K. Qureshi and F. G. Khan, "Adaptive checkpointing
strategy to tolerate faults in economy based grid," Journal of
Supercomputing, vol. 50, pp. 1-18, 2009.

[16] M. Nandagopal and V. R. Uthariaraj, "Fault Tolerant Scheduling
Strategy for Computational Grid Environment," International
Journal of Engineering Science and Technology, vol. 2, no.9, pp.
4361-4372, 2010.

[17] J. Mehta and S. Chaudhary, "Checkpointing and recovery mechanism
in grid," Proc. of Sixteenth Intl. Conf. on Advanced Computing and
Communication (ADCOM 2008), Chennai, 14-17 Dec. 2008, pp.
131-140.

[18] P. Domingues, J. Silva and L. Silva, "Sharing Checkpoints to Improve
Turnaround Time in Desktop Grid Computing," Proc. of the 20th
Intl. Conf. on Advanced Information Networking and Applications
(AINA’06), Vienna, Austria, 18-20 April 2006.

[19] M. Chtepen et al, "Adaptive Task Checkpointing and Replication:
Toward Efficient Fault-Tolerant Grids," IEEE Trans. Parallel and
Distributed Systems, vol. 20, no. 2, pp. 180-190, Feb. 2009.

[20] M. Chtepen, F. Claeys, B. Dhoedt, F. Turck, P. Demeester, and P.
Vanrolleghem, "Adaptive checkpointing in dynamic grids for
uncertain job durations," Proc. of the 31st Intl. Conf. on Information
Technology Interfaces (ITI), Dubrovnik, Croatia, 22-25 June 2009.

T. Altameem / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 4 (6) , 2013, 858-862

www.ijcsit.com 862

